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Abstract

The domain name service (DNS) plays an important role
in the operation of the Internet, providing a two-way map-
ping between domain names and their numerical identifiers.
Given its fundamental role, it is not surprising that a wide
variety of malicious activities involve the domain name ser-
vice in one way or another. For example, bots resolve DNS
names to locate their command and control servers, and
spam mails contain URLs that link to domains that resolve
to scam servers. Thus, it seems beneficial to monitor the
use of the DNS system for signs that indicate that a certain
name is used as part of a malicious operation.

In this paper, we introduce EXPOSURE, a system that
employs large-scale, passive DNS analysis techniques to
detect domains that are involved in malicious activity. We
use 15 features that we extract from the DNS traffic that al-
low us to characterize different properties of DNS names
and the ways that they are queried.

Our experiments with a large, real-world data set con-
sisting of 100 billion DNS requests, and a real-life deploy-
ment for two weeks in an ISP show that our approach is
scalable and that we are able to automatically identify un-
known malicious domains that are misused in a variety of
malicious activity (such as for botnet command and control,
spamming, and phishing).

1 Introduction

The Domain Name System (DNS) is a hierarchical nam-
ing system for computers, services, or any resource con-
nected to the Internet. Clearly, as it helps Internet users lo-

cate resources such as web servers, mailing hosts, and other
online services, DNS is one of the core and most important
components of the Internet. Unfortunately, besides being
used for obvious benign purposes, domain names are also
popular for malicious use. For example, domain names are
increasingly playing a role for the management of botnet
command and control servers, download sites where mali-
cious code is hosted, and phishing pages that aim to steal
sensitive information from unsuspecting victims.

In a typical Internet attack scenario, whenever an at-
tacker manages to compromise and infect the computer of
an end-user, this machine is silently transformed into a bot
that listens and reacts to remote commands that are issued
by the so-called botmaster. Such collections of compro-
mised, remotely-controlled hosts are common on the Inter-
net, and are often used to launch DoS attacks, steal sensitive
user information, and send large numbers of spam messages
with the aim of making a financial profit.

In another typical Internet attack scenario, attackers set
up a phishing website and lure unsuspecting users into en-
tering sensitive information such as online banking creden-
tials and credit card numbers. The phishing website often
has the look and feel of the targeted legitimate website (e.g.,
an online banking service) and a domain name that sounds
similar.

One of the technical problems that attackers face when
designing their malicious infrastructures is the question of
how to implement a reliable and flexible server infrastruc-
ture, and command and control mechanism. Ironically, the
attackers are faced with the same engineering challenges
that global enterprises face that need to maintain a large,
distributed and reliable service infrastructure for their cus-
tomers. For example, in the case of botnets, that are ar-



guably one of the most serious threats on the Internet today,
the attackers need to efficiently manage remote hosts that
may easily consists of thousands of compromised end-user
machines. Obviously, if the IP address of the command and
control server is hard-coded into the bot binary, there ex-
ists a single point of failure for the botnet. That is, from
the point of view of the attacker, whenever this address is
identified and is taken down, the botnet would be lost.

Analogously, in other common Internet attacks that tar-
get a large number of users, sophisticated hosting infras-
tructures are typically required that allow the attackers to
conduct activities such as collecting the stolen information,
distributing their malware, launching social engineering at-
tempts, and hosting other malicious services such as phish-
ing pages.

In order to better deal with the complexity of a large,
distributed infrastructure, attackers have been increasingly
making use of domain names. By using DNS, they ac-
quire the flexibility to change the IP address of the mali-
cious servers that they manage. Furthermore, they can hide
their critical servers behind proxy services (e.g., using Fast-
Flux [36]) so that their malicious server is more difficult to
identify and take down.

Using domain names gives attackers the flexibility of
migrating their malicious servers with ease. That is, the
malicious “services” that the attackers offer become more
“fault-tolerant” with respect to the IP addresses where they
are hosted.

Our key insight in this paper is that as malicious services
are often as dependent on DNS services as benign services,
being able to identify malicious domains as soon as they ap-
pear would significantly help mitigate many Internet threats
that stem from botnets, phishing sites, malware hosting ser-
vices, and the like. Also, our premise is that when looking
at large volumes of data, DNS requests for benign and mali-
cious domains should exhibit enough differences in behav-
ior that they can automatically be distinguished.

In this paper, we introduce a passive DNS analysis ap-
proach and a detection system, EXPOSURE, to effectively
and efficiently detect domain names that are involved in ma-
licious activity. We use 15 features (9 of which are novel
and have not been proposed before) that allow us to charac-
terize different properties of DNS names and the ways that
they are used (i.e., queried).

Note that researchers have used DNS before as a way to
analyze, measure and estimate the size of existing botnets
in the past (e.g., [21, 22, 34]). Some solutions have then at-
tempted to use DNS traffic to detect malicious domains of a
certain type (e.g., [30, 36]). However, all these approaches
have only focused on specific classes of malware (e.g., only
malicious Fast-Flux services). Our approach, in compari-
son, is much more generic and is not only limited to certain
classes of attacks (e.g., only botnets).

In our approach, based on features that we have identi-
fied and a training set that contains known benign and mali-
cious domains, we train a classifier for DNS names. Being
able to passively monitor real-time DNS traffic allows us to
identify malware domains that have not yet been revealed
by pre-compiled blacklists. Furthermore, in contrast to ac-
tive DNS monitoring techniques (e.g., [36]) that probe for
domains that are suspected to be malicious, our analysis is
stealthy, and we do not need to trigger specific malicious
activity in order to acquire information about the domain.
The stealthy analysis that we are able to perform has the ad-
vantage that our adversaries, the cyber-criminals, have no
means to block or hinder the analysis that we perform (in
contrast to approaches such as in [36]).

To date, only one system has been proposed that aims
to detect malicious domains generically using passive DNS
analysis. In a concurrent and independent work that was
very recently presented by Antonakakis et al. [11], the au-
thors present Notos. Notos dynamically assigns reputation
scores to domain names whose maliciousness has not been
discovered yet. In comparison, our approach is not depen-
dent on large amounts of historical maliciousness data (e.g.,
IP addresses of previously infected servers), requires less
training time, and unlike Notos, is also able to detect mali-
cious domains that are mapped to a new address space each
time and never used for other malicious purposes again.

In our offline experiments, we have applied EXPO-
SURE to a large, real-world data set collected over a pe-
riod of two and a half months. The data that we used for
the initial training consists of DNS traffic from the Secu-
rity Information Exchange (SIE) [7] that shares with us the
real-time response data from authoritative name servers lo-
cated in North America and in Europe. These sensors re-
ceive large amounts of data. In fact, during the analysis
period of 2.5 months, our system monitored and analyzed
more than 100 billion DNS queries that targeted 4.8 million
distinct domain names.

Furthermore, in order to determine the feasibility of our
detection approach in real-life, we used EXPOSURE to
train on and monitor the DNS traffic of a commercial ISP
that supports more than 30,000 clients. We were able to
identify more than 3000 new malicious domains that were
previously unknown to our system and were not in our train-
ing set. Moreover, we have cross-checked our detection re-
sults with public services such as malwareurl.com, McAffee
Site Advisor, and Norton Safe Web. The experimental re-
sults we present in this paper show that our approach is scal-
able, and that we are able to automatically identify domain
names that are misused in a variety of malicious activity.

In summary, our paper makes the following contribu-
tions:

• We present a novel analysis technique for the detec-
tion of malicious domains that is based on passive
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DNS request analysis. Our technique does not rely on
prior knowledge about the kind of service the mali-
cious domain provides (e.g., phishing, Fast-Flux ser-
vices, spamming, botnets that use a domain generation
algorithm, etc.). This is significantly different from
existing techniques that only target Fast-Flux domains
used in botnet operations. Furthermore, our approach
requires less training time, and less training data than
Notos [11], and does not have some of its limitations.

• We present 15 behavioral features that our system uses
in the the identification of malicious domains. Of these
features, 9 have not been proposed before in previous
research.

• We describe the implementation of our real-time detec-
tion prototype system which we call EXPOSURE. We
used large volumes of DNS data that we collected over
a two and a half month period as the offline data set
for EXPOSURE. During this period, we recorded 100
billion DNS queries that resulted in 4.8 million dis-
tinct domain names. Furthermore, we deployed EX-
POSURE in real-life in an ISP and used it to monitor
the DNS traffic of 30,000 clients. Our experimental
results show that the technique we propose is scalable,
and is able to accurately distinguish between malicious
and benign domains with a low false positive rate.

2 Overview of the Approach

The goal of EXPOSURE is to detect malicious domains
that are used as part of malicious operations on the Internet.
To this end, we perform a passive analysis of the DNS traffic
that we have at our disposal. Since the traffic we monitor is
generated by real users, we assume that some of these users
are infected with malicious content, and that some malware
components will be running on their systems. These com-
ponents are likely to contact the domains that are found to
be malicious by various sources such as public malware do-
main lists and spam blacklists. Hence, by studying the DNS
behavior of known malicious and benign domains, our goal
was to identify distinguishable generic features that are able
to define the maliciousness of a given domain.

2.1 Extracting DNS Features for Detection

Clearly, to be able to identify DNS features that allow
us to distinguish between benign and malicious domains,
and that allow a classifier to work well in practice, large
amounts of training data are required. As the offline dataset,
we recorded the recursive DNS (i.e., RDNS) traffic from
Security Information Exchange (SIE) [7]). We performed
offline analysis on this data and used it to determine DNS

features that can be used to distinguish malicious DNS fea-
tures from benign ones. The part of the RDNS traffic we
used as initial input to our system consisted of the DNS an-
swers returned from the authoritative DNS servers to the
RDNS servers. An RDNS answer consists of the name of
the domain queried, the time the query is issued, the du-
ration the answer is required to be cached (i.e., TTL) and
the list of IP addresses that are associated with the queried
domain. Note that the RDNS servers do not share the infor-
mation of the DNS query source (i.e. the IP address of the
user that issues the query) due to privacy concerns.

By studying large amounts of DNS data, we defined
15 different features that we use in the detection of mali-
cious domains. 6 of these features have been used in pre-
vious research( e.g., [29, 30, 36]), in particular in detect-
ing malicious Fast-Flux services or in classifying malicious
URLs [27]. The features that we use in the detection and our
rationale for selecting these features are explained in detail
in Section 3.

2.2 Architecture of EXPOSURE

Figure 1 gives an overview of the system architecture of
the EXPOSURE. The system consists of five main compo-
nents:

The first component, the Data Collector, records the
DNS traffic produced by the network that is being moni-
tored.

The second component is the Feature Attribution com-
ponent. This component is responsible for attributing the
domains that are recorded to the database with the features
that we are looking for in the DNS traffic.

The third component, the Malicious and Benign Do-
mains Collector, works independent of, and in parallel to the
Data Collector Module. It collects domains that are known
to be benign or malicious from various sources. Our be-
nign domains sets are composed of information acquired
from Alexa [4] and a number of servers that provide de-
tailed WHOIS [2] data. In contrast, the malicious domain
set is constructed from domains that have been reported to
have been involved in malicious activities such as phish-
ing, spamming, and botnet infections by external sources
such as malwaredomains.com, Phishtank ([31]), and mal-
ware analyzers such as Anubis [13]). Note that these lists
are constantly updated, and become even more comprehen-
sive over time. The output of the Malicious and Benign
Domains Collector is used to label the output of the Feature
Attribution component.

Once the data is labeled, the labeled set is fed into the
fourth component: The Learning Module. This module
trains the labeled set to build malicious domain detection
models. Consequently, these models, and the unlabeled do-
mains, become an input to the fifth component: The Classi-
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Figure 1: Overview of EXPOSURE

fier.
The Classifier component takes decisions according to

the detection models produced by the Learning component
so that the unlabeled domains are grouped into two classes:
domains that are malicious, and those that are benign.

2.3 Real-Time Deployment

The deployment phase of EXPOSURE consists of two
steps. In the first step, the features that we are interested in
are monitored and the classifier is trained based on a set of
domains that are known to be benign or malicious. In a sec-
ond step, after the classifier has been trained, the detection
starts and domains that are determined to be suspicious are
reported. Note that after an initial period of seven days of
training1, the classifier is retrained every day. Hence, EX-
POSURE can constantly keep up with the behavior of new
malware.

3 Feature Selection

To determine the DNS features that are indicative of ma-
licious behavior, we tracked and studied the DNS usage
of several thousand well-known benign and malicious do-
mains for a period of several months (we obtained these
domains from the sources described in Section 4). Af-
ter this analysis period, we identified 15 features that are
able to characterize malicious DNS usage. Table1 gives an
overview of the components of the DNS requests that we
analyzed (i.e., feature sets) and the features that we identi-
fied. In the following sections, we describe these features
and explain why we believe that they may be indicative of
malicious behavior.

3.1 Time-Based Features

The first component of a DNS record that we analyze is
the time at which the request is made. Clearly, the time of

1We have experimentally determined the optimal training period to be
seven days (see Section 4.2.)

an individual request is not very useful by itself. However,
when we analyze many requests to a particular domain over
time, patterns indicative of malicious behavior may emerge.
In particular, we examine the changes of the volume (i.e.,
number) of requests for a domain. The time-based features
that we use in our analysis are novel and have not been stud-
ied before in previous approaches.

One of our insights is that malicious domains will often
show a sudden increase followed by a sudden decrease in
the number of requests. This is because malicious services
often use a technique called domain flux [34] to make their
infrastructures more robust and flexible against take downs.
Each bot may use a domain generation algorithm (DGA) to
compute a list of domains to be used as the command and
control server or the dropzone. Obviously, all domains that
are generated by a DGA have a short life span since they are
used only for a limited duration. Examples of malware that
make use of such DGAs are Kraken/Bobax [10], the Srizbi
bots [41] and the Conficker worm [32]. Similarly, malicious
domains that have recently been registered and are involved
in scam campaigns will show an abrupt increase in the num-
ber of requests as more and more victims access the site in
a short period of time.

To analyze the changes in the number of requests for a
domain during a given period of time, we divide this period
into fixed length intervals. Then, for each interval, we can
count the number of DNS queries that are issued for the do-
main. In other words, the collection of DNS queries that
target the domain under analysis can be converted into time
series (i.e., chronologically ordered sequences of data val-
ues). Hence, we can leverage off-the-shelf algorithms [12].
We perform our time series analysis on two different scopes:
First, we analyze the time series globally. That is, the start
and end times of the time series are chosen to be the same as
the start and the end times of the entire monitoring period.
Second, we apply local scope time series analysis where
the start times and end times are the first and last time the
domain is queried during the analysis interval. While the
global scope analysis is used for detecting domains that ei-
ther have a short life or have changed their behavior for a
short duration, the local scope analysis focuses on how do-
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Feature Set # Feature Name
1 Short life

Time-Based 2 Daily similarity
Features 3 Repeating patterns

4 Access ratio
5 Number of distinct IP addresses

DNS Answer-Based 6 Number of distinct countries
Features 7 Number of domains share the IP with

8 Reverse DNS query results
9 Average TTL

TTL 10 Standard Deviation of TTL
Value-Based 11 Number of distinct TTL values

Features 12 Number of TTL change
13 Percentage usage of specific TTL ranges

Domain Name- 14 % of numerical characters
Based Features 15 % of the length of the LMS

Table 1: Features.(LMS = Longest Meaningful Substring)

mains behave during their life time.
A domain is defined to be a short-lived domain (i.e., Fea-

ture 1) if it is queried only between time t0 and t1, and if this
duration is comparably short (e.g., less than several days).
A domain that suddenly appears in the global scope time
series and disappears after a short period of activity has a
fairly abnormal behavior for being classified as a benign do-
main. Normally, if a domain is benign, even if it is not very
popular, our thesis is that the number of queries it receives
should exceed the threshold at least several times during the
monitoring period ( i.e., two and a half months in our exper-
iments). Therefore, its time series analysis will not result in
an abrupt increase followed by a decrease as the time series
produced by a short-lived domain does.

The main idea behind performing local scope analysis is
to zoom into the life time of a domain and study its behav-
ioral characteristics. We mainly focus on three features (i.e.,
Features 2, 3, 4) that may distinguish malicious and benign
behavior either by themselves or when used in conjunction
with other features. All the features involve finding similar
patterns in the time series of a domain. Feature 2 checks
if there are domains that show daily similarities in their re-
quest count change over time (i.e., an increase or decrease
of the request count at the same intervals everyday). Feature
3 aims to detect regularly repeating patterns. Finally, Fea-
ture 4 checks whether the domain is generally in an “idle”
state (i.e., the domain is not queried) or is accessed contin-
uously (i.e., a popular domain).

The problem of detecting both short-lived domains and
domains that have regularly repeating patterns can be
treated as a change point detection (CPD) problem. CPD
algorithms operate on time series and their goal is to

find those points in time at which the data values change
abruptly. The CPD algorithm that we implemented [12]
outputs the points in time the change is detected and the av-
erage behavior for each duration. In the following section,
we explain how we interpret the output of the CPD to de-
tect the short-lived domains and the domains with regularly
repeating patterns.

3.1.1 Detecting abrupt changes

As CPD algorithms require the input to be in a time series
format, for each domain, we prepare a time series represen-
tation of their request count change over time. Our interval
length for each sampling point is 3600 seconds (i.e., one
hour). We chose 3600 seconds as the interval length after
experimenting with different values (e.g., 150, 300 etc.).

Before feeding the input directly into the CPD algorithm,
we normalize the data with respect to the local maximum.
Then, we make use of the well-known CUSUM (cumula-
tive sum) robust CPD algorithm that is known to deliver
good results for many application areas [12]. CUSUM is
an online algorithm that detects changes as soon as they oc-
cur. However, since we record the data to a database before
analyzing it, our offline version of the CUSUM algorithm
yields even more precise results (i.e., the algorithm knows
in advance how the “future” traffic will look like as we have
already recorded it).

Our algorithm to identify change points works as fol-
lows: First, we iterate over every time interval t = 3600
seconds, from the beginning to the end of the time series.
For each interval t, we calculate the average request count
P−t for the previous ϵ = 8 time intervals and the traffic pro-
file P+

t for the subsequent ϵ intervals. We chose ϵ to be
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8 hours based on the insight that a typical day consists of
three important periods: working time, evening and night.
Second, we compute the distance d(t) between P−t and P+

t .
More precisely:

P−t =
ϵ∑

i=1

Pt−i

ϵ
P+

t =
ϵ∑

i=1

Pt+i

ϵ
d(t) =

∣∣P−t − P+
t

∣∣

(1)
The ordered sequence of values d(t) forms the input to

the CUSUM algorithm. Intuitively, a change point is a time
interval t for which d(t) is sufficiently large and is a local
maximum.

The CUSUM algorithm requires two parameters. The
first parameter is an upper bound (local max) for the nor-
mal, expected deviation of the present (and future) traffic
from the past. For each time interval t, CUSUM adds d(t)−
local max to a cumulative sum S. The second parame-
ter determines the upper bound (cusum max) that S may
reach before a change point is reported. To determine a suit-
able value for local max, we require that each individual
traffic feature may deviate by at most allowed avg dev =
0.1. Based on this, we can calculate the corresponding value
local max =

√
dim × allowed avg dev2. Since in our

application, there is only one dimension, the local max =
allowed avg dev. For cusum max, we use a value of 0.4.
Note that we determined the values for allowed avg dev
and cusum max based on empirical experiments and mea-
surements.

The CPD algorithm outputs the average request count
for each period a change is detected and the time that the
change occurs. Since we employ the CPD algorithm for
two purposes (namely to detect short-lived domains and do-
mains that have repeating patterns), we run it twice. We first
use the global scope time series and then the local scope
time series as input. When the CPD is run with global time
series, it can detect short-lived domains. Short-lived do-
mains tend to have two sudden behavioral changes, whereas
domains that are continuously queried have multiple change
points. On the other hand, to detect the domains with re-
peating patterns on their local scope time series, we asso-
ciate the number of the changes and the standard deviation
of the durations of the detected changes.

3.1.2 Detecting similar daily behavior

A typical technique to measure the level of similarity of two
time series is to calculate the distance between them [23].
To determine whether a domain produces similar time series
every day, we calculate the Euclidean Distance between ev-
ery pair of time series of a domain. Euclidean Distance is a
popular distance measuring algorithm that is often used in
data mining [14, 37, 43].

We first need to break the local time series produced for
each domain into daily time series pieces. Each day starts at
00:00 am and finishes at 23:59 pm. Assuming that a domain
has been queried n days during our analysis period, and di,j

is the Euclidean Distance between ith day and jth day, the
final distance D is calculated as the average of (n − 1) ∗
(n−2)/2 different distance pairs, as shown in the following
formula:

D = (
n∑

i=1

n∑

j=i+1

di,j)/((n − 1) ∗ (n − 2)/2) (2)

Using the Euclidean Distance, the results are sensitive to
small variations in the measurements (e.g., 1000 requests
between 9 and 10 am compared to 1002 requests between
the same time period may fail to produce a correct similarity
result although the difference is not significant). A common
technique to increase the correctness of the results is to ap-
ply preprocessing algorithms to the time series before cal-
culating the Euclidean Distance [17]. In our preprocessing
step, we transform the time series T = t1, t2, ..., tn, where
n is number of intervals, into two phases. In the first phase,
we perform offset translation by subtracting the mean of the
series from each value (i.e., T = T −mean(T )). In the sec-
ond phase, we scale the amplitude by dividing each value by
the variance (i.e., T = (T − mean(T ))/std(T )) [17].

3.2 DNS Answer-Based Features

The DNS answer that is returned by the server for a
domain generally consists of several DNS A records (i.e.,
mappings from the host to IP addresses). Of course, a do-
main name can map to multiple IP addresses. In such cases,
the DNS server cycles through the different IP addresses in
a round robin fashion [1] and returns a different IP map-
ping each time. This technique is useful in practice for load
balancing.

Malicious domains typically resolve to compromised
computers that reside in different Autonomous Systems
(ASNs), countries, and regions. The attackers are oppor-
tunistic, and do not usually target specific countries or IP
ranges. Whenever a computer is compromised, it is added
as an asset to the collection. Also, attackers typically use
domains that map to multiple IP addresses, and IPs might
be shared across different domains.

With this insight, we extracted four features from the
DNS answer (i.e., feature set F2). The first feature is the
number of different IP addresses that are resolved for a
given domain during the experiment window (Feature 5).
The second feature is the number of different countries that
these IP addresses are located in (Feature 6). The third fea-
ture is the reverse DNS query results of the returned IP ad-
dresses (Feature 7). The fourth feature (Feature 8) is the

6



number of distinct domains that share the IP addresses that
resolve to the given domain. Note that Features 5, 6, and 7
have been used in previous work (e.g., [?, 11, 30, 36] ).

Although uncommon, benign domains may also share
the same IP address with many other domains. For example,
during our experiments, we saw that one of the IP addresses
that belongs to networksolutions.com is shared by 10, 837
distinct domains. This behavior is sometimes exhibited by
web hosting providers and shared hosting services.

To determine if an IP is used by a shared hosting service,
we query Google with the reverse DNS answer of the given
IP address. Legitimate web hosting providers and shared
hosting services are typically ranked in the top 3 query an-
swers that Google provides. This helps us reduce false pos-
itives.

3.3 TTL Value-Based Features

Every DNS record has a Time To Live (TTL) that spec-
ifies how long the corresponding response for a domain
should be cached. It is recommended that the TTL is set
to between 1 and 5 days so that both the DNS clients
and the name servers can benefit from the effects of DNS
caching [3].

Systems that aim for high availability often set the TTL
values of host names to lower values and use Round-Robin
DNS. That is, even if one of the IP addresses is not reach-
able at a given point in time, since the TTL value expires
quickly, another IP address can be provided. A represen-
tative example for such systems are Content Delivery Net-
works (CDNs).

Unfortunately, setting lower TTL values and using
Round-Robin DNS is useful for the attackers as well. Us-
ing this approach, malicious systems achieve higher avail-
ability and become more resistant against DNS blacklist-
ing (DNSBL) [5] and take downs. For example, Fast-Flux
Service Networks (FFSN) [36] are malicious systems that
abuse Round-Robin DNS.

Most techniques to detect FFSNs are based on analyzing
abnormal usage patterns of Round-Robin DNS. More pre-
cisely, to label a domain as being a member of an FFSN,
previous research [30, 36] expects to observe a low TTL
usage combined with a constantly growing DNS answers
list (i.e., distinct IP addresses).

We extracted five features from the TTL value included
in the DNS answers (see Table 1). The average TTL
usage feature (Feature 9) was introduced in previous re-
search [30]. The rest of the features (i.e., Features 10, 11,
12, 13) have not been used before in previous work.

During our experiments with large volumes of DNS traf-
fic, we observed that frequent TTL changes are exhibited by
malicious networks that have a sophisticated infrastructure.
In such networks, some of the bots are selected to be prox-

ies behind which other services (e.g., command and control
servers) can be hidden. The managers of such malicious
networks assign different levels of priorities to the proxy
bots by setting lower TTL values to the hosts that are less
reliable. For example, there is a good chance that a proxy
running on an ADSL line would be less reliable than a proxy
running on a server running in a university environment.

To determine the validity of our assumption about this
type of TTL behavior, we tracked the Conficker domains
for one week. We observed that different TTL values were
returned for the IPs associated with the Conficker domains.
While the static IP addresses have higher TTL values, the
dynamic IP addresses, that are most probably assigned to
home computers by Internet service providers, have lower
TTL values (e.g., adsl2123-goland.net would have a lower
TTL value than a compromised host with the domain name
workstation.someuniversity.edu).

We observed that the number of TTL changes and the to-
tal number of different TTL values tend to be significantly
higher in malicious domains than in benign domains. Also,
malicious domains exhibit more scattered usage of TTL val-
ues. We saw that the percentage for the usage of some spe-
cific ranges of TTL values is often indicative of malicious
behavior. Based on our empirical measurements and exper-
imentations, the TTL ranges that we investigate are [0, 1),
[1, 10), [10, 100), [100, 300), [300, 900), [900, inf). Mali-
cious domains tend to set their TTL values to lower values
compared to benign domains. In particular, the range of
[0, 100) exhibits a significant peak for malicious domains.

3.4 Domain Name-Based Features

Benign services usually try to choose domain names that
can be easily remembered by users. For example, a bank
called “The Iceland Bank” might have a domain name such
as “www.icelandbank.com”. In contrast, attackers are not
concerned that their domain names are easy to remember.
This is particularly true for domain names that are generated
by a DGA.

The main purpose of DNS is to provide human-readable
names to users as they often cannot memorize IP addresses
of servers. Therefore, benign Internet services tend to
choose easy-to-remember domain names. In contrast, hav-
ing an easy-to-remember domain name is not a concern for
people who perform malicious activity. This is particularly
true in cases where the domain names are generated by a
DGA. To detect such domains, we extracted two features
from the domain name itself: First, the ratio of the numer-
ical characters to the length of the domain name (Feature
14), and second, the ratio of the length of the longest mean-
ingful substring (i.e., a word in a dictionary) to the length
of the domain name (Feature 15).

Note that there exist popular domains such as yahoo.com
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and google.com that do not necessarily include “meaning-
ful” words. In order to gain a higher confidence about a
domain, we query Google and check to see if it returns a
hit-count for a domain that is above a pre-defined threshold.

When analyzing a domain, we only focus on the second
level domains (i.e., SLD). For example, for x.y.server.com,
we would take server.com. To detect domain names that
have been possibly automatically generated, we calculate
the percentage of numerical characters (Feature 14) and the
ratio of the length of the longest meaningful substring to the
total length of the SLD (Feature 15). To extract all possible
meaningful substrings from an SLD, we check the English
dictionary.

As some benign domains in China and Russia consist
of combinations of alphabetical and numerical characters,
Feature 15 produces a high positive rate. However, when
Features 14 and 15 are combined, the false positives de-
crease. Also, for domains that are determined to be suspi-
cious, we check how many times it is listed by Google. The
reasoning here is that sites that are popular and benign will
have higher hit counts.

4 Building Detection Models

4.1 Constructing the Training Set

The quality of the results produced by a machine learn-
ing algorithm strongly depends on the quality of the train-
ing set [35]. Our goal is to develop a classifier that is able
to label domains as being benign, or malicious. Thus, we
require a training set that contains a representative sample
of benign and malicious domains. To this end, we studied
several thousand malicious and benign domains, and used
them for constructing our training set.

We collected malicious domains from multiple sources.
Specifically, we obtained malicious domains from malware-
domains.com [19], the Zeus Block List [26], Malware Do-
mains List [25], Anubis [13] reports, a list of domains
that are extracted from suspected to be malicious URLs
analyzed by Wepawet [18], and Phishtank [31]. We also
used the list of domains that are generated by the DGAs of
the Conficker [32] and Mebroot [34] (i.e., Torpig) botnets.
These malicious domain lists represent a wide variety of
malicious activity, including botnet command and control
servers, drive-by download sites, phishing pages, and scam
sites that can be found in spam mails.

Note that we are conservative when constructing the ma-
licious domain list. That is, we apply a preliminary check
before labeling a domain as being malicious and using it
in our training set. Malicious domain sources such as
Wepawet and Phishtank operate on URLs that have been
submitted by users. Hence, while most URLs in these
repositories are malicious, not all of them are. Also, while

some third level domains (3LD) of a domain extracted from
a URL may behave maliciously, the rest may not (e.g.,
a.x.com might be malicious, while x.com might be benign).

Assuming that a domain that is suspected to be mali-
cious either by Wepawet or Phishtank has ttotal possible
3LDs (number of distinct 3LD recorded by EXPOSURE
during the analysis period) and tmal 3LDs are thought to
be malicious, we choose the domain to be representative
for a malicious behavior only if tmal/ttotal is greater than
0.75 (i.e., only if 75% of the 3LDs have been reported to
be involved in malicious activities). The initial malicious
domain list that we generated consists of 3500 domains.

As discussed in detail in Section 5.1, we assume that all
of the Alexa top 1000 domains and domains that we have
observed on our sensors that are older than one year are
benign. Therefore, we construct our initial benign domain
list using these domains. However, to ensure that our benign
domain list does not include any domain that might have
been involved in malicious activity, we perform a two-step
verification process.

First, we compare all the domains in the benign domain
list with the malicious domain list and with the tools that test
domains for their maliciousness, specifically with McAffee
Site Advisor and Norton Safe Web. Second, we also cross-
check the benign domain with the list provided by the Open
Directory Project (ODP – a large, human-edited directory of
the web constructed and maintained by volunteer editors).
Our initial benign domain list consists of 3000 domains.

4.2 The Initial Period of Training

By experimenting with different values, we determined
that the optimal period of initial training for our system was
seven days. This period is mainly required for us to be able
to use the time-based features that we described in Section
3. During this time, we can observe the time-based behav-
ior of the domains that we monitor and can accurately take
decisions on their maliciousness.

After the initial one week of training, we are able to re-
train the system every day, hence, increasing detection ac-
curacy.

4.3 The Classifier

Our classifier is built as a J48 decision tree algo-
rithm (J48). J48 [40] is an implementation of the C4.5 algo-
rithm [33] that is designed for generating either pruned or
unpruned C4.5 decision trees. It constructs a decision tree
from a set of labeled training set by using the concept of
information entropy (i.e., the attribute values of the training
set).

The J48 algorithm leverages the fact that the tree can
be split into smaller subtrees with the information obtained

8



from the attribute values. Whenever the algorithm encoun-
ters a set of items that can clearly be separated from the
other class by a specific attribute, it branches out a new leaf
according to the value of the attribute. Each time a decision
needs to be taken, the attribute with the highest normalized
gain is chosen. Among all possible values of the attributes,
if there is any value for which there is no ambiguity, the
branch is terminated and the appropriate label is assigned
to it. The splitting procedure stops when all instances in all
subsets belong to the same class.

We use a decision tree classifier because these algorithms
have shown to be efficient while producing accurate results
[33]. As the decision tree classifier builds a tree during the
training phase, the features that are best in separating the
malicious and the benign domains can be clearly seen.

Recall that we divided the 15 features that we use into
four different classes according to the type of information
used: Features that are extracted from the time series anal-
ysis (F1, Time-Based Features), the DNS answer analy-
sis (F2, DNS Answer-Based Features), the TTL value anal-
ysis (F3, TTL Value-Based Features), and the analysis of
the domain name (F4, Domain Name-Based Features).

To find the combination of features that produce the min-
imum error rate, we trained classifiers using different com-
binations of feature sets and compared the results. Figure 2
shows the percentage of the number of miss-classified items
with three different training schemes: 10-fold cross valida-
tion, 66% percentage split, and training on the whole train-
ing set. Note that the smallest error rates were produced by
F1. Therefore, while experimenting with different combi-
nations of feature sets, we excluded the combinations that
do not include F1 (i.e., F23, F24, F34 and F234). The high-
est error rates are produced by F3 and F4. However, when
all features are combined (i.e., F-all), the minimum error
rate is produced. Hence, we use the combination of all the
features in our system.

5 Evaluation

5.1 DNS Data Collection for Offline Experiments

Our sensors for the SIE DNS feeds receive a large vol-
ume of traffic (1 million queries per minute on average).
Therefore, during our offline experimental period of two
and a half months, we monitored approximately 100 bil-
lion DNS queries. Unfortunately, tracking, recording and
post-processing this volume of traffic without applying any
filtering was not feasible in practice. Hence, we reduced
the volume of traffic that we wished to analyze to a more
manageable size by using two filtering policies. The goal of
these policies was to eliminate as many queries as possible
that were not relevant for us. However, we also had to make
sure that we did not miss relevant, malicious domains.

The first policy we used whitelisted popular, well-known
domains that were very unlikely to be malicious. To create
this whitelist, we used the Alexa Top 1000 Global Sites [4]
list. Our premise was that the most popular 1000 websites
on the Internet would not likely be associated with domains
that were involved in malicious activity. These sites typi-
cally attract many users, and are well-maintained and mon-
itored. Hence, a malicious popular domain cannot hide its
malicious activities for long. Therefore, we did not record
the queries targeting the domains in this whitelist. The do-
mains in the whitelist received 20 billion queries during two
and a half months. By applying this first filtering policy, we
were able to reduce 20% of the traffic we were observing.

The second filtering policy targeted domains that were
older than one year. The reasoning behind this policy was
that many malicious domains are disclosed after a short
period of activity, and are blacklisted. As a result, some
miscreants have resorted to using domain generation algo-
rithms (DGA) to make it more difficult for the authorities to
blacklist their domains. For example, well-known botnets
such as Mebroot [34] and Conficker [32] deploy such algo-
rithms for connecting to their command and control servers.
Typically, the domains that are generated by DGAs and reg-
istered by the attackers are new domains that are at most
several months old. In our data set, we found 45.000 do-
mains that were older than one year. These domains re-
ceived 40 billion queries. Hence, the second filtering policy
reduced 50% of the remaining traffic, and made it manage-
able in practice.

Clearly, filtering out domains that do not satisfy our age
requirements could mean that we may miss malicious do-
mains for the training that are older than one year. How-
ever, our premise is that if a domain is older than one year
and has not been detected by any malware analysis tool,
it is not likely that the domain serves malicious activity.
To verify the correctness of our assumption, we checked
if we had filtered out any domains that were suspected to
be malicious by malware analysis tools such as Anubis and
Wepawet. Furthermore, we also queried reports produced
by Alexa [4], McAfee Site Advisor [8], Google Safe Brows-
ing [6] and Norton Safe Web [9]. 40 out of the 45, 000 fil-
tered out domains (i.e., only 0.09%) were reported by these
external sources to be “risky” or “shady”. We therefore be-
lieve that our filtering policy did not miss a significant num-
ber of malicious domains because of the pre-filtering we
performed during the offline experiments.

5.2 Evaluation of the Classifier

To evaluate the accuracy of the J48 DecisionTree Clas-
sifier, we classified our training set with 10-fold cross-
validation and percentage split, where 66% of the training
set is used for training, and the rest is used to check the cor-
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Figure 2: Percentage of miss-classified instances

rectness. Table 3 reports the results of the experiment. The
Area Under the ROC curve [15] for the classifier is high for
both methods.

Note that the false positive rate is low (i.e., around 1% for
both methods). After investigating the reasons for the miss-
classifications, we saw that the classifier had identified 8
benign domains as being malicious. The reason for the mis-
classification was that these domains were only requested a
small number of times during the two and half months of
experiments (i.e., making the classifier conclude that they
were short-lived) and because they exhibited TTL behav-
ior that looked anomalous (e.g., possibly because there was
a configuration error, or because the site maintainers were
experimenting to determine the optimal TTL value).

5.3 Experiments with the Recorded Data Set

During the two and a half month offline experimental pe-
riod, we recorded and then analyzed 4.8 million distinct do-
main names that were queried by real Internet users. Note
that a domain that only receives a few requests cannot pro-
duce a time series that can then be used for the time-based
features we are analyzing. This is because a time series
analysis produces accurate results only when the sampling
count is high enough. In order to find the threshold for the
minimum number of queries required for each domain, we
trained our known malicious and benign domain list with
differing threshold values. Figure 4 shows the detection
and false positive rates for the threshold values we tested.
Based on these empirical results, we set the threshold to 20
queries, and excluded the 4.5 million domains from our ex-
periments that received less than 20 requests in the two and
a half months duration of our monitoring.
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tection rate

For further experiments, we then focused on the remain-
ing 300,000 domains that were queried more than 20 times.
EXPOSURE decided that 17,686 out of the 300,000 do-
mains were malicious (5.9%).

5.3.1 Evaluation of the Detection Rate

The percentage split and cross-validation evaluations on the
training set show that the detection rate of our classifier is
around 98%. Since our goal is to be able to detect unknown
malicious domains that have not been reported by any mali-
cious domain analyzer, our evaluation of the classifier needs
to show that we are able to detect malicious domains that
do not exist in our training set. To this end, we used mal-
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AUC Detection Rate False Positives
Full data 0.999 99.5% 0.3%
10-folds Cross-Validation 0.987 98.5% 0.9%
66% Percentage Split 0.987 98.4% 1.1%

Figure 3: Classification accuracy. (AUC=Area Under the ROC Curve)

wareurls.com, a malware domains list that we had not used
as a source for the initial malicious domains training set.

During the period we performed our experiments, mal-
wareurls.com reported 569 domains as being malicious.
Out of these 569 domains, 216 domains were queried by
the infected machines in the networks that we were mon-
itoring. The remaining 363 malware domains were not re-
quested. Therefore, in our detection rate evaluation, we take
into account only the 216 requested domains.

5 of the 216 domains were queried less than 20 times dur-
ing entire monitoring period. Since we filter out domains
that are requested less than 20 times, we only fed the re-
maining 211 domains to our system. In the experiments,
all of these domains (that were previously unknown to us)
were automatically detected as being malicious by EXPO-
SURE. Hence, the detection rate we observed was similar
to the detection rate (i.e. 98%) estimated by the percentage
split and cross-validation evaluations on the training set.

Obviously, our approach is not comprehensive and can-
not detect all malicious domains on the Internet. However,
its ability to detect a high number of unknown malicious
domains from DNS traffic is a significant improvement over
previous work.

5.3.2 Evaluation of the False Positives

As the domains in our data set are not labeled, determin-
ing the real false positive rate is a challenge. Unfortunately,
manually checking all 17,686 domains that were identified
as being malicious is not feasible. This is because it is dif-
ficult, in practice, to determine with certainty (in a limited
amount of time) that a domain that is engaged in suspicious
behavior is indeed malicious. Nevertheless, we conducted
three experiments to make estimates about the false posi-
tives of our detection.

In order to obtain more information about the domains
in our list, we first tried to automatically categorize them
into different groups. For each domain, we started Google
searches, checked well-known spamlists, and fed the do-
mains into Norton Safe Web (i.e., Symantec provided us in-
ternal access to the information they were collecting about
web pages). We divided the domains into ten groups:
spam domains (Spam), black-listed domains (BlackList),
malicious Fast-Flux domains (FastFlux), domains that are
queried by malware that are analyzed by malware analy-

sis tools (Malware), Conficker domains (Conficker), do-
mains that have adult content, domains that are suspected
to be risky by Norton Safe Web and McAfee Site Advi-
sor (Risky), phishing domains (Phishing), domains about
which we were not able to get any information either from
Google or from other sources (No Info), and finally, be-
nign domains that are detected to be malicious (False Posi-
tives) (See Table 2).

In the first experiment, we manually investigated 50 ran-
dom malicious domains from our list of 17,686. We queried
Google, checked websites that discuss malicious networks,
and tried to identify web links that reported a malicious be-
havior by the domain. Among the 50 randomly chosen do-
mains, the classifier detected three benign domains as being
malicious. All these domains had an abnormal TTL change
behavior.

In the second experiment, we automatically cross-
checked the malicious and suspicious domains that we had
identified with our classifier using online site rating tools
such as McAfee Site Advisor, [8], Google Safe Brows-
ing [6] and Norton Safe Web [9]. The results show that the
false positive estimate is around 7.9% for the malicious do-
mains that we identified. Given that our classifier is able to
identify malicious domains automatically, these false posi-
tive rates are acceptable for the tool to be deployed a large-
scale, early warning system.

Note that EXPOSURE did not generate any false posi-
tives during the two week real-time, real-world deployment
in an ISP as discussed in the next section.

5.4 Real-World, Real-Time Detection with EX-
POSURE

To test the feasibility and scalability of EXPOSURE as
a malicious domain detector in real-life, we deployed it in
the network of an ISP that provided us complete access to
its DNS servers for two weeks. These servers receive DNS
queries from a network that supports approximately 30,000
clients.

During the two-week experimental period, EXPO-
SURE analyzed and classified 100 million DNS queries.
No pre-filtering was applied. At the end of two weeks, EX-
POSURE detected 3117 new malicious domains that were
previously not known to the system and had not been used
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MW-Group Rand 50 Malicious
Spam 18 3691
Black-List 8 1734
FastFlux - 114
Malware 6 979
Conficker 4 3693

MW-Group Rand 50 Malicious
Adult 3 1716
Risky - 788
Phishing 3 0
No Info 5 2854
False Positives 3 (6%) 1408 (7.9%)

Table 2: Tests for False Positives

in the training. 2821 of these domains fall into the category
of domains that are generated by a DGA and all belong to
the same malicious entity. 5 out of the remaining 396 do-
mains were reported as being malicious domains by security
companies such as Anvira, one month after we had detected
them.

We cross-checked the rest of the remaining domains we
had detected. All detected domains were classified as being
risky by McAfee Site Advisor [8].

Figures 5(a) and 5(b) show the number of new, previ-
ously unknown malicious domains detected every day. As
can be seen, after the initial seven days of local training in
the network being monitored, EXPOSURE started to pro-
duce daily detections and detected 200 new malicious do-
mains per day on average.

After the experiments, we provided the ISP with the list
of clients that were potentially infected, or had been victims
of scams.

The distinct number of IP addresses that queried the
malicious domains that EXPOSURE detected were 3451.
Since the ISP applies a dynamic IP assignment to its clients,
this number does not represent the exact number of infected
machines in the network. To estimate the number of in-
fected machines in the network, we grouped the malicious
domains according to the IP addresses they are mapped to.
There were 5 different groups of malicious domains. We
then calculated the average number of distinct IP addresses
that issued DNS queries to the domains in these 5 groups
every hour. We chose one hour as an interval by assum-
ing that the users in the network stay online at least an hour
before they disconnect. Table 3 lists the number of clients
that attempt to access the domains that fall into the differ-
ent malware groups. We estimate that there were about 800
machines on the network that issued the requests to the ma-
licious domains.

5.5 Comparison with Previous Work

5.5.1 The Fast-Flux Detectors

The results in Table 2 show that 114 of the malicious do-
mains that our classifier has identified during the initial

training phase fall in to category of Fast-Flux Service Net-
works (FFSNs). Since we claim that our approach is able to
detect a wide range of malicious domains including FFSNs,
we compare our detection rate for this threat with the most
recent published work in this area (i.e., [30]).

Perdisci et. al. [30] filters out all of the domains that
are not likely to be classified as being FFSN. When we ap-
plied the same policy to our two and half month data set,
300,000 domains were filtered out and 5,771 were left as
candidates for FFSNs. When we classified these domains
with the feature set Perdisci et. al. use in their paper, we
detected 114 FFSNs using their approach. Hence, our ap-
proach is as good in detecting FFNSs as Perdisci et. al.
although it is a much more generic system.

5.5.2 Notos: Reputation-based Malicious Domain De-
tection

Very recently, Antonakakis et al. [11] concurrently and in-
dependently proposed a detection scheme that is similar to
our work. The proposed system, Notos, dynamically as-
signs reputation scores to domain names whose malicious-
ness has not been discovered yet. A detection scheme is
built that is based on the premise that agile malicious uses
of DNS have unique characteristics. Hence, the claim is that
malicious use of DNS can be distinguished from benign use.

To be able to define these unique characteristics, the au-
thors analyze a number of features that are grouped into
three categories: Network-based features, zone-based fea-
tures (i.e. features that are extracted from the domain name
itself, either by string analysis or with the information ob-
tained from whois service) and evidence-based features.

While the network-based features are employed for
combing out the domains that do not exhibit fluxy behav-
ior (i.e. stable DNS usage), the zone-based features are
used for distinguishing between legitimate CDNs and the
domains that are likely to be malicious. After this two-layer
classification, reputation scores are given to the domains.
In other words, all of the domains and the IP addresses they
are mapped to are compared with already known lists of do-
mains or IP addresses that host malicious entities. This third
step of classification is done using evidence-base features.

12



Groups Avg Life Time Most frequent life time # of infected clients
DGA domains 1.2 days 0.99 days 49
Iksmas Worm 11.9 days 11.9 days 70
Worm:Win32/Slenping 12.0 days 12.0 days 253
Trojan-Generic.dx 11.9 days 11.9 days 70
Other 10.8 days 11.9 days 391
Total 833

Table 3: Information on the detected malicious domains

In their paper, as a limitation of Notos, the authors state
that Notos is not able to detect malicious domains that are
mapped to a new address space each time and never used
for other malicious purposes again. This limitation stems
from the fact that Notos strongly relies on network-based
features. EXPOSURE does not have this limitation as it
uses time-based features. Since such domains would have
a short life, they would appear in the time series and disap-
pear immediately after they are deactivated by the attacker.
Hence, unlike Notos, we are able to detect such domains.

As discussed before, the 2821 automatically generated
malicious domains that we detected in the real-life traffic of
the ISP had an average lifespan of 1.2 days (see Table 3).
That is, all these domains were short-lived domains. Dur-
ing their life time, on average, they mapped to 3.14 distinct
IP addresses. In the first phase of Notos’ detection scheme,
the domains are divided into two categories: domains that
have a stable network-model and domains that have a non-
stable network-model. Since the automatically generated
malicious domains that we are able to detect do not use a
wide range of IP addresses, Notos might classify these do-
mains as domains with a stable network profile. In other
words, we believe that Notos might miss-classify them.

Also, as the authors discuss in their paper, because No-
tos is a reputation-based system, there may be cases where
legitimate domains that are hosted in “bad neighborhoods”
may be identified as being malicious. In comparison, the
features that EXPOSURE relies on do not cause such false
positives as no historical information on IPs or domains are
utilized.

One main advantage of EXPOSURE over Notos is that
Notos requires a large passive DNS collection and sufficient
time to create an accurate, passive DNS database. First, it
is unclear how much time is required for this database to
be comprehensive. Second, this database needs to be con-
stantly updated with large data-feeds in order to remain ac-
curate and to have a wide overview of malicious activities
on the Internet. In comparison, as we show in our evalua-
tion, EXPOSURE only required a week of local training,
and much less DNS data in the network of a medium ISP to
be able to detect unknown domains.

6 Related Work

The Domain Name System (DNS) has been increasingly
being used by attackers to maintain and manage their mali-
cious infrastructures. As a result, recent research on botnet
detection has proposed number of approaches that leverage
the distinguishing features between malicious and benign
DNS usage.

The first study [39] in this direction proposed to collect
real-world DNS data for analyzing malicious behavior. The
results of the passive DNS analysis showed that malicious
domains that are used in Fast-Flux networks exhibit behav-
ior that is different than benign domains. Similarly, Zdrnja
et al. [42] performed passive monitoring to identify DNS
anomalies. In their paper, although they discuss the pos-
sibility of distinguishing abnormal DNS behavior from be-
nign DNS behavior, the authors do not define DNS features
that can be used to do so.

In general, botnet detection through DNS analysis fol-
lows two lines of research: The first line of research tries
to detect domains that are involved in malicious activities.
The goal is to identify infected hosts by monitoring the DNS
traffic. The second line of research focuses on the behaviors
of groups of machines in order to determine if they are in-
fected (e.g., a collection of computers always contact the
same domain repeatedly).

6.1 Identifying Malicious Domains

To detect malicious domains, previous approaches make
use of passive DNS analysis, active DNS probing, and
WHOIS [2] information. For example, recent work by
Perdisci et al. [30] performs passive DNS analysis on re-
cursive DNS traffic collected from number a number of
ISP networks with the aim of detecting malicious Fast-Flux
services. Contrary to the previous work [24, 28, 29, 36],
Perdisci’s work does not rely on analyzing blacklisted do-
mains, and domains that are extracted from spam mails. Our
work significantly distinguishes itself from theirs as we are
able to detect all different kinds of malicious domains such
as phishing sites, spamming domains, dropzones, and bot-
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Figure 5: The first time a domain is queried and the first
time it is detected

net command and control servers. We do not only focus on
detecting Fast-Flux service networks.

A second branch of study that aims to detect malicious
domains [27, 36] leverages active DNS probing methods.
That is, the domains that are advertised to be malicious by
various sources (e.g. spam mails) are repeatedly queried to
detect the abnormal behavior. The main drawback of ac-
tive DNS analysis is the possibility of being detected by the
miscreants who manage the domains under analysis. Pas-
sive DNS analysis, in comparison, is more stealthy because
of its non-intrusiveness characteristics.

Based on URL features they extract from spam mails,
Ma et. al. [27] study a number of statistical methods for ma-
chine learning for classifying websites. In particular, they
analyze spam URLs according to their lexical construction,
and the information contained in the host name part of the

URL. To obtain the information from the host name, they
perform active probing to determine the number of IP ad-
dresses associated with the domain. Once they obtain the
IP address list, they analyze the location of the IP address
and to which ANS it belongs to. The main limitation of
this system is that it performs the analysis only based on the
domains that are included in spam mails. Hence, the sys-
tem cannot see other classes of malicious domains such as
command and control servers.

Another type of study on detecting malicious domains
leverages properties inherent to domain registrations and
their appearance in DNS zone files [20]. That is, they as-
sociate the registration information and DNS zone proper-
ties of domains with the properties of known blacklisted do-
mains for proactive domain blacklisting. This method com-
pletely relies on historical information. Therefore, it is not
able to detect domains that do not have any registration in-
formation and DNS zone commonalities with known black-
listed domains. On the other hand, our work, which does
not require any historical information, is able to detect such
domains.

6.2 Identifying Infected Machines by Monitoring
Their DNS Activities

In [16], the authors propose an anomaly-based botnet de-
tection mechanisms by monitoring group activities in the
DNS traffic of a local network. The authors claim that
there exist distinguishing features to differentiate DNS traf-
fic generated by botnets and benign clients. Similarly, [38]
also attempts to identify botnet DNS access behavior in a
local network. The authors use a bayesian algorithm. In
comparison to these existing works, we aim to identify ma-
licious domains from DNS traffic in general, and do not
only focus on botnets.

6.3 Generic Identification of Malicious Domains
Using Passive DNS Monitoring

To date, only one system has been proposed that aims to
detect malicious domains using passive DNS analysis. In
a concurrent and independent work very recently presented
by Antonakakis et al. [11], the authors present Notos. No-
tos dynamically assigns reputation scores to domain names
whose maliciousness has not been discovered yet.

We have compared EXPOSURE with Notos in Sec-
tion 5.5.2. EXPOSURE eliminates several shortcomings
of Notos. It does not require a wide overview of malicious
activities on the Internet, a much shorter training time, and
is able to classify domains that Notos would miss-classify.
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7 Limitations

A determined attacker who knows how EXPOSURE
works and who is informed about the features we are look-
ing for in DNS traffic might try to evade detection. To evade
EXPOSURE, the attackers could try to avoid the specific
features and behavior that we are looking for in DNS traf-
fic. For example, an attacker could decide to assign uniform
TTL values across all compromised machines. However,
this would mean that the attackers would not be able to dis-
tinguish between more reliable, and less reliable hosts any-
more and would take a reliability hit on their malicious in-
frastructures. As another example, the attackers could try to
reduce the number of DNS lookups for a malicious domain
so that only a single lookup is performed every hour (i.e.,
so that the malicious domain is blacklisted). However, this
is not trivial to implement, reduces the attack’s impact, and
requires a high degree of coordination on the attacker’s side.
Even though it is possible for an attacker to stay below our
detection radar by avoiding the use of these features, we be-
lieve that this comes with a cost for the attacker. Hence, our
systems helps increase the difficulty bar for the attackers,
forces them to abandon the use of features that are useful
for them in practice, and makes it more complex for them
to manage their infrastructures.

Clearly, our detection rate also depends on the training
set. We do not train for the family of malicious domains
that constitute attacks that are conceptually unknown and
have not been encountered before in the wild by malware
analyzers, tools, or experts. However, the more malicious
domains are fed to the system, the more comprehensive our
approach becomes over time.

Note that if the networks that we are monitoring and
training our system on are not infected, obviously, we will
not see any malicious domains. We believe that we can im-
prove our ability to see more malicious attacks by having
access to larger networks and having more installations of
EXPOSURE.

8 Conclusions

The domain service (DNS) is a crucial component of the
Internet. DNS provides a two-way mapping between do-
main names and their IP addresses. Just as DNS is a crit-
ical service for the functioning of benign Internet services,
it has also started to play an important role for malicious
activities. For example, bots resolve DNS names to locate
their command and control servers, and spam mails contain
URLs that link to domains that resolve to scam servers.

In this paper, we introduced EXPOSURE, a system that
employs passive DNS analysis techniques to detect mali-
cious domains. Our thesis is that it is beneficial to mon-
itor the use of the DNS system on a large-scale for signs

that indicate that a certain name is used as part of a ma-
licious operation. Our experimental results show that our
approach works well in practice, and that it is useful in auto-
matically identifying a wide category of malicious domains
such as botnet command and control servers, phishing sites,
and scam hosts. Compared to related work, our approach
is generic, and does only focus on a specific class of threat
(e.g., such as Fast-Flux botnets).

We believe that EXPOSURE is a useful system that can
help security experts and organizations in their fight against
cyber-crime. As future work, we plan to release EXPO-
SURE to the public as a community service.
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